Iterative Sparse FFT for M?sparse Vectors: Deterministic versus Random Sampling

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Deterministic Sparse FFT for Functions with Structured Fourier Sparsity

In this paper a deterministic sparse Fourier transform algorithm is presented which breaks the quadratic-in-sparsity runtime bottleneck for a large class of periodic functions exhibiting structured frequency support. These functions include, e.g., the oft-considered set of block frequency sparse functions of the form

متن کامل

A sparse multidimensional FFT for real positive vectors

We present a sparse multidimensional FFT randomized algorithm (sMFFT) for positive real vectors. The algorithm works in any fixed dimension, requires an (almost)-optimal number of samples (O R log N R) and runs in O R log(R) log N R complexity (where N is the size of the vector and R the number of nonzeros). It is stable to noise and exhibits an exponentially small probability of failure.

متن کامل

Deterministic Sampling of Sparse Trigonometric Polynomials

One can recover sparse multivariate trigonometric polynomials from few randomly taken samples with high probability (as shown by Kunis and Rauhut). We give a deterministic sampling of multivariate trigonometric polynomials inspired by Weil’s exponential sum. Our sampling can produce a deterministic matrix satisfying the statistical restricted isometry property, and also nearly optimal Grassmann...

متن کامل

Sampling Random Colorings of Sparse Random Graphs

We study the mixing properties of the single-site Markov chain known as the Glauber dynam-ics for sampling k-colorings of a sparse random graph G(n, d/n) for constant d. The best knownrapid mixing results for general graphs are in terms of the maximum degree ∆ of the input graphG and hold when k > 11∆/6 for all G. Improved results hold when k > α∆ for graphs withgirth ≥ 5 and ∆ ...

متن کامل

Algorithms for the Iterative Estimation of Discrete-Valued Sparse Vectors

In Compressed Sensing, a real-valued sparse vector has to be estimated from an underdetermined system of linear equations. In many applications, however, the elements of the sparse vector are drawn from a finite set. For the estimation of these discrete-valued vectors, matched algorithms are required which take the additional knowledge of the discrete nature into account. In this paper, the est...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings in applied mathematics & mechanics

سال: 2021

ISSN: ['1617-7061']

DOI: https://doi.org/10.1002/pamm.202000134